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a r t i c l e i n f o

Article history:

Received 16 July 2009

Received in revised form

7 January 2010

Accepted 11 January 2010
Handling editor: A.V. Metrikine
(airborne). However, a simple and reliable methodology is still lacking for mechanical
Available online 9 February 2010
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.01.013

responding author. Tel.: +1 819 821 8000x626

ail address: Dilal.Rhazi@USherbrooke.ca (D. R
a b s t r a c t

In several automotive and aircraft applications there is a need for simple tools to assess

quickly and accurately the performance of sound packages. Statistical energy analysis

(SEA) and the transfer matrix method (TMM) are examples of such methods. The used

methodology (for modeling sound packages) is well validated for acoustic excitations

excitations (structure-borne). This work concentrates on the latter. It presents and

compares three different simple approaches to model the vibration and acoustic

response of a mechanically excited structure with an added noise control treatment.

Various examples are presented to confirm their relevance and accuracy in comparison

to more exact and costly methods, such as the finite element method. In particular, it is

shown that the TMM with a size correction (FTMM) is accurate enough to eliminate the

classical assumption of low coupling classically assumed in SEA modeling of sound

packages and/or compute efficiently the structure-borne insertion loss of sound

packages used in SEA and FEM models.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Sound package components in aircrafts and vehicles in different configurations play a vital role for interior noise
control. For this reason, the prediction of the acoustic and vibration behavior of a multi-layer structure, made up of
homogeneous layers, is of interest to several industries.

A typical configuration consists of the prediction of the airborne response of a master structure with an attached noise
control treatment in both single-wall and double-wall configurations. The transfer matrix method (TMM) is extensively
used and is well validated for solving the above problem [1,2,3,4]. However, the application of the TMM has been mainly
limited to acoustic excitations (plane wave or diffuse field). A few studies have been published on the use and application
of the method for a structure-borne excitation. However, these studies remain scarce and incomplete. For instance, Villot
et al. [5] rapidly hinted, in their paper on spatial windowing to account for size effects, to the use of the TMM to solve the
response of a multi-layer structures with a mechanical excitation; but did not present application nor validation results.
Guigou-Carter et al. [6] studied experimentally and numerically the performance of wood floorings in terms of impact
noise induced by a tapping machine using transfer matrix approach. In their analytical model the system is modeled as an
infinite multi-layer isotropic system. In a study comparing structure-borne and airborne insertion loss of sound packages
added to automotive structures, Nelisse et al. [7] presented experimental results showing that the airborne insertion loss
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(ABIL) and the structure-borne insertion loss (SBIL) are very similar for highly damped structures, but did not give
numerical results nor discuss the calculation of the SBIL using the TMM.

In this work three different approaches for predicting the vibroacoustic response of planar structures with attached
acoustic materials under mechanical excitation are presented and compared. Special emphasis is given to a wave-based
approach implemented within the transfer matrix method. In particular, a simple and computationally efficient finite size
correction is introduced to accurately capture the vibration and acoustic response of the system below the structure’s
critical frequency. The method is compared to two other simpler methods. The first is based on SEA and the second on a
modal formulation. Various examples involving single-wall and double-wall configurations are used to demonstrate the
accuracy and limitations of the three methods. The finite element method is used as a reference. Moreover, the proposed
methodology is used to illustrate the difference between airborne and structure-borne performance of such structures.

The specific problem of interest considers the prediction of the vibration and acoustic response of a planar master
structure with an attached multi-layer sound package. The structure is assumed baffled for acoustic radiation and is
excited by a point load with a random position (rain-on-the-roof type of excitation). The first approach is based on the
propagation of plane waves in the main structure and the layers of the attached noise control treatment. The second uses
statistical energy analysis (SEA) for the main structure and calculates an equivalent damping to account for the noise
control treatment. The last approach uses a modal technique by calculating the equivalent impedance for the added
treatment. In the three approaches, the TMM is used to model multi-layered noise control treatments.

This paper is divided in three main sections: the first focuses on the presentation of the three approaches, the second
presents various numerical results to validate and/or highlight the limitations of the presented methods using the finite
element method (FEM) as a reference. Finally, the last section shows an application comparing structure-borne insertion
loss and airborne insertion loss to confirm the experimental results of Nelisse et al. [7].

2. Theory

2.1. Wave-based approach

In the first approach (referred to as the wave approach), the studied structures are assumed to be of infinite extent; they
separate two semi-infinite fluids and are excited by a point load f(x,y), as shown in Fig. 1. Moreover, the mechanical
excitation and the response of the structure are assumed to be harmonic. In wave-number space (kx, ky), the load f(x,y) can
be represented by an infinite number of plane waves using the spatial Fourier integral transform by the following
equation:

f ðx; yÞ ¼
1

4p2

Z þ1
�1

Z þ1
�1

Fðkx; kyÞexp½jðkxxþkyyÞ�dkx dky

Fðkx; kyÞ ¼
R þ1
�1

R þ1
�1

f ðx; yÞexp½�jðkxxþkyyÞ�dx dy

8><
>: (1)

Using index 1 for the excitation side and 2 for the receiver side, the matrix connecting the pressure and velocity on one
side of a multi-layer to those on the other side, as shown by Fig. 1, is generally written as

P1

V1

" #
¼

T11 T12

T21 T22

" #
P2

V2

" #
(2)

where T11, T12, T21 and T22 represent components of the global condensed transfer matrix, which are functions of the
properties and nature of waves propagating in the system-layers and the inter-layers continuity equations [1]. P1, V1

represent pressure and velocity at the emission side and P2, V2 represent pressure and velocity at the receiver side of the
Fig. 1. Multilayered panel under mechanical excitation.
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multi-layer structures. Note that the constituents transfer matrices have various dimensions and variables (e.g. solid layer
will have a 4�4 matrix, a porous layer will have a 6�6 matrixy.). Finally, the damping is included directly in the
expression of the elastic modulus.

For each wave-number component (kx, ky), the transmission and radiation problems will be solved using the classic
transfer matrix method. This allows for handling an arbitrary multilayer made up of a master structure (elastic, composite,
sandwich, etc.) and an attached multi-layered sound package (a combination of porous, fluid, screen, etc.).

Once the various indicators (pressure, velocity, surface impedance, radiated powery etc.) are computed for a given
wave-number, the global indicators are recovered using Eq. (1). For example, the quadratic velocity and radiated power of
the main structure into the emission side take the form

/V2S¼
1

8p2S

Z þ1
�1

Z þ1
�1

j½Vðkx; kyÞ�z ¼ 0j
2dkx dky (3)

Prad ¼
jFj2

8p2S
Re

Z þ1
�1

Z þ1
�1

ZB;1

jZS;TMMþZB;1j
2

dkx dky

" #
(4)

where

½Vðkx; kyÞ�z ¼ 0 ¼
1

ZS;TMMþZB;1
;

ZS,TMM is the impedance of the multilayer seen from the excitation side (computed using the TMM), and

ZB;1 ¼ k0Z0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0�ðk
2
xþk2

y Þ

q
is the radiation impedance [8], seen from the excitation side, k0 is the acoustic wavenumber,

Z0 is the characteristic impedance in the emission domain, and S is the surface of the multilayer.
Below the critical frequency of the main structure, the wave approach leads to poor results when calculating the sound

radiated by a mechanically excited planar structure [8]. However, the transfer matrix method can be extended easily to
take into account the panel’s size and corrections for the radiation efficiency at low frequencies. The approach proposed by
Atalla et al. [9], known under the name of finite transfer matrix method (FTMM) is used here. The application of this
method to the calculation of the radiated power is shown by the following equation:

Prad ¼
1

8p2
Re

Z 2p

0

Z þ1
0

Z0sfiniteðkr ;fÞ
jZS;TMMþZB;1j

2
kr dkr df

" #
(5)

where kr and j represent the wave-number and heading in wave-number space, respectively. The ‘‘finite size’’ radiation
efficiency is defined by [9]

sfinite ¼
ReðZRÞ

Z0S
(6)

with

ZR ¼ jor0

Z
S

Z
S
exp½�jðkxx0þkyy0Þ�GðM;M0Þexp½jðkxxþkyyÞ�dSðM0ÞdSðMÞ (7)

This term represents a geometrical correction to account for the finite size effect. It depends only on the geometry of the
panel. G(M,M0)=exp[� jk0R]/2pR is the half space Green’s function. The basic idea of this approach is to replace the
radiation efficiency in the receiving medium sinfinite by the theoretical baffled radiation efficiency of the window under
vibration due to forced propagating waves sfinite. Note that a variant to Eq. (6), in wave-number domain, is the spatial
windowing technique of Villot et al. [5].

For airborne excitation, the FTMM has been shown to predict the low frequency transmission loss of complex planar
multi-layer system extremely well [9]. This paper will show the importance and the accuracy of this approach for
mechanical excitations. However, for the latter the evaluation of the radiated power, using a direct implementation of Eqs.
(5)–(7) is computationally expensive. It is shown using analytical integration that the evaluation of Eq. (7) can be reduced
to a single integral leading to quick computation of sfinite for a given wavenumber. This in turn speeds up enormously the
computation of the radiated power.

2.2. Sea-based approach

In the second approach, based on SEA equations for the main structure, a light coupling is assumed between the
structure and the sound package. The effect of the sound package will simply be represented by an equivalent damping Zeq.
If needed, a mass correction can also be added to the main structure.

At a given frequency, the dispersion equation of the bare panel (plate, solid, composite, etc.) as shown by Eq. (8), is
solved for the propagation bending wave-number

DBarePanelðo;jÞ ¼ 0 (8)
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Fig. 2. Panel with acoustic treatment excited with a random force in SEA approach.

Fig. 3. Multilayer assimilated to the panel in SEA approach.
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The latter is imposed to the excited face of the sound package with a pressure-release condition on the rear face, as
illustrated in Fig. 2. The TMM is then used to calculate the equivalent added damping using the classical SEA power balance
equation:

Zeq ¼
Pt

input

oM/V2
1S

(9)

where Pt
input is the power input to the noise control treatment, calculated using the TMM.

Pt
input ¼

1

2
jV1j

2Re
Z0T11þT12

Z0T21þT22

� �
(10)

and V1 is the velocity of the main structure.
The response of the treated panel is finally recovered from the SEA response of the bare panel using the total damping

ZTot=Zs+Zeq (Fig. 3). Here Zs denotes the structural damping of the main structure. In the case of a strong coupling (e.g.
viscoelastic treatment, rigid foam, etc.), it is necessary to include these layers in the main structures by calculating the
equivalent properties.

2.3. Modal approach

The same methodology is used for the modal approach (third approach). The response of the main structure is
written in terms of its modes, and the effect of the sound package on each mode (m,n) is replaced by a modal impedance
Zmn,NCT, which is calculated using the TMM with a trace wavenumber kt,mn. Once again, it is assumed in this calculation that
the receiver face of the multilayer is a pressure-release surface and modal damping is used in the modal impedance
expression (as a modal structural damping) and is considered constant (equal for all modes). The total modal impedance is
written as

Zmn;T ¼ ZmnðBare PanelÞ þZmn;NCT (11)

where Zmn(BarePanel) is the modal impedance of the bare panel. Zmn,NCT is calculated by solving the equation of motion of the
system illustrated by Fig. 4

ZmnðBarePanelÞVmn ¼ Fmn�

Z
S
Pinterfaceðx; yÞfmnðx; yÞdx dy (12)

where Pinterface, jmn(x, y), Vmn, Fmn are the panel-treatment interface pressure, the panel’s mode shapes, modal velocity and
generalized force, respectively.

Zmn,NCT is related to Pinterface via following relation:

Zmn;NCTVmn ¼

Z
S
Pinterfaceðx; yÞfmnðx; yÞdx dy (13)
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Fig. 4. The pressure exerted by the treatment on the plate in modal approach.
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Expanding Pinterface in terms of the panel’s mode shapes

Pinterfaceðx; yÞ ¼
X
m;n

Pmnjmnðx; yÞ (14)

and using orthogonality of the modes, one finally obtains the expression of the sound package modal impedance matrix:

Zmn;NCT ¼
Pmn

Vmn
Nmn (15)

where Nmn=S/4 is the modal norm for simply supported panel and S is the surface of the panel. The ratio Pmn/Vmn is
obtained from the condensed transfer matrix of the sound package, Eq. (2). Assuming a pressure-release condition at the
rear face, the general form of Eq. (15) is given by Eq. (16)

Zmn;NCT ¼
T12

T22
Nmn (16)

Finally, the space averaged quadratic velocity and the acoustic power radiated by the panel are given by

/V2S¼
jFj2

32

X
m;n

1

jZmnðBarePanelÞ þZmn;NCTj
2

(17)

Prad ¼ r0c0S
jFj2

32

X
m;n

smn

jZmnðBarePanelÞ þZmn;NCTj
2

(18)

Here, smn denotes the modal radiation efficiency of the panel. The asymptotic formulation of Leppington [10] is used in
the numerical examples shown in this paper.

3. Numerical results

This section describes several examples illustrating the application and the validity of the three presented approaches
in two configurations: single-wall and double-wall. The single-wall is studied using a plate with an attached layer in two
situations light and strong coupling (fibrous materiel and elastic foam); whereas, the double wall is investigated using
three cases: plate–fibrous material–plate system, plate–elastic foam–plate system and a sandwich panel covered by a foam
(elastic porous) and septum (mass layer).

In order to validate the three approaches, a systematic comparison with the finite element method is presented. The
comparison is shown for the quadratic velocity and radiated power on both sides of the structures. The finite element
method prediction is carried out with an in-house finite element prediction code. The plates were modeled using linear
elements with four nodes and the foam is modeled using quadratic porous elements with eight nodes. The (u,p)
formulation presented by Atalla et al. [11] is used for the modeling of the porous layers. Finally, the damping is included
directly in the expression of the elastic modulus.

Note that the plates are assumed baffled for acoustic radiation (i.e. use of the Rayleigh integral). Moreover, due to the
cost of the FEM calculation, the results are limited to point load excitation and is located at (0.45, 0.45), whereas in the
presented approaches the excitation is assumed to be a rain-on-the-roof. In the wave approach, the position of point load
has no significance since the structure is infinite and in the modal approach, a point force with random location with equal
probability (rain-on-the-roof) is used. Eqs. (15) and (16) assume a theoretical average over all possible locations.

Finally, note that the vibroacoustic response of the receiver side can only be obtained with the finite transfer matrix
approach (first approach) and due to the nature of the used methods; all the presented results are frequency band averaged
using one-third octave bands.

The first stage of numerical calculation is to study the convergence, in other words, to establish how many elements
(mesh for the finite element method), expansion order for the modal method and approximation of the infinite integration
over wavenumber for the finite transfer matrix method. For the finite element method, the mesh was guided by the
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smallest wavelengths in the modeled components (use of 6 linear elements per wavelength) and successive refinement of
the mesh used to verify convergence. A similar approach is used for the modal approach (i.e. modes with natural frequency
up to 1.5 times the maximum frequency of interest were kept and successive increase of the number of kept modes used to
validate convergence). For the wave approach, it was found that integration up to 40 k0 was sufficient for convergence of
the results. In this latter approach, Gauss–Kronrod adaptive numerical integration was used to evaluate the integrals.

The first example consists of a 1 m�1 m�0.003 m bare aluminum panel excited by a point load. A comparison of the
quadratic velocity, computed using the three presented approaches and the FEM, is given in Fig. 5. An excellent agreement
is observed. The FEM depicts modal fluctuations at lower frequencies (recall that data is presented in 1/3 octave bands).

To compare various estimations of the radiated power, the calculations are done using (i) a geometrical correction
(FTMM) in the wave approach, (ii) the asymptotic expressions of the radiation efficiency developed by Leppington [10] in
the SEA and modal approaches and (iii) the Rayleigh integral in the FEM. The results are shown in Fig. 6. For illustration
purposes, the radiated power computed by the TMM (infinite panel radiation efficiency) is also shown. As expected the
TMM mainly captures the radiated power above the critical frequency. However, using the FTMM, good agreement is
observed over the whole frequency range. In this simple case (bare panel), the excellent agreement observed between the
three presented approaches and FEM is expected. Still the results are interesting since they demonstrate the relevance of
the simple size correction used in the FTMM for calculating the radiated power.

Next, the case of single-wall is presented with two configurations: light coupling represented by a 1 m�1 m�3 mm
aluminum panel with an attached 3 cm thick fibrous material and strong coupling by replacing the fibrous material with
3 cm thick elastic foam. The properties of the fibrous material and the foam are given in Table 1.

A mesh of 50�50�6 linear brick poroelastic elements is used for the fibrous material and foam. These meshes have
been selected to ensure convergence of calculations. Figs. 7–10 show comparison of the various methods for the quadratic
velocity and radiated power in the emission side.

Good agreement was observed between the three approaches and FEM. The FEM and modal approach depict modal
fluctuations at lower frequencies due to their modal character.

The comparison of radiated power in emission side is also good keeping in mind the assumptions made for the different
methods used to estimate the radiation efficiency (Figs. 9 and 10). The results also corroborate the validity of the FTMM in
estimating the radiation efficiency compared to the classic methods of Leppington [10] and direct evaluation of the
Rayleigh integral.

The first double-wall configuration consists of a flat 1 m�1 m�0.001 m aluminum panel with 3 cm thick attached
fibrous material/foam covered with a 2.44 mm septum. Figs. 11 and 12 show the comparison of quadratic velocity in the
emission side using the FTMM, SEA, modal approaches and FEM.

For both light coupling (limp fibrous material) and strong coupling (bonded foam) good agreement is observed. The
tendencies are well captured and all methods were able to capture the mass-spring-mass resonance of the system for the
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Fig. 5. Quadratic velocity of a bare aluminum panel (dB re 1 m/s).



ARTICLE IN PRESS

102 103 104
-60

-55

-50

-45

-40

-35

-30

-25

-20

Frequency (Hz)

R
ad

ia
te

d 
po

w
er

 (d
B

)
FEM
TMM
Modal Approach
SEA Approach
FTMM
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Fig. 7. Quadratic velocity of a plate–fibrous material system (dB re 1 m/s) (emission side).
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strong coupling case. However, in the latter, both SEA and the FTMM overestimate the response at low frequencies which is
understandable considering the assumptions of both methods. Note that in the SEA approach the mass effects are included
via a smeared added mass but the effects of the stiffness are neglected.

To illustrate the accuracy of the estimation of the radiated power, Fig. 13 shows the radiated power in the receiver side
for the strong coupling configuration. Recall that as presented only the FTMM is able to calculate the vibration and acoustic
indicators on the receiver side. Again, good comparison is observed between the FEM and the FTMM. The latter takes a
fraction of the set-up and computation time needed for FEM.

In the last double-wall example, we consider the panel-foam-septum case and replace the steel panel by a highly
damped panel (typical metal polymer sandwich panel: MPS). This case depicts strong coupling, and, thus, the direct use of
the presented SEA approach will be expected to fail. Tables 1 and 2 give the properties of the studied configurations. Since
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frequency dependency of the viscoelastic layer’s properties is of no interest here, the loss factor and Young’s modulus of
the added layer are assumed to be frequency independent. Still, representative values are used. The MPS panel is modeled
using three solid layers in the FTMM. In SEA and modal approaches equivalent properties are used for the MPS panel using
an isotropic laminate model [12]. Other models such as Ross-Kerwin-Ungar [13], sandwich model and general laminate
model [12] could have been used but they lead to similar results. Finally, a sandwich finite element was used in the FEM
predictions. This element has been proven to lead to similar results compared to the classical but costly solid element
modeling [14].

Figs. 14 and 15 show the results for the quadratic velocity of the panel and power radiated by the system into the
receiver domain, respectively. As expected the SEA approach overestimates the quadratic velocity below the double wall
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resonance of the system but overall leads to good predictions. On the other hand, the FTMM and the modal methods lead to
excellent results. On the receiver side, the FTMM overpredicts the power radiated compared to FEM but the tendencies are
well captured. This is however acceptable keeping in mind the assumptions made for the methods used to estimate the
radiation efficiency in both methods. Again, these results are obtained at a fraction of the cost needed for the FEM
computation.
4. Airborne and structure-borne insertion loss

Finally to illustrate a practical application of the presented FTMM method, airborne insertion loss (ABIL) and structure-
borne insertion loss (SBIL) are compared for two typical sound packages added to a panel. ABIL is classically used to
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compare the performance of sound packages. It is also widely used in SEA models to account for the effects of acoustic
materials [15]. It is given by the difference of the transmission loss (TL) of the bare and treated panel (Fig. 16 (a))

ABIL¼ ðTLÞtreated�ðTLÞbare (19)

where

TL¼ 10 log10
Pinc

Ptrans

� �
(20)

Here Pinc and Ptrans denote the incident and transmitted power, respectively.
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For several applications, the question arises about the validity of using the ABIL in SEA models where resonant behavior
is dominant or in configurations where a mechanical excitation is used.

Nelisse et al. [7] show experimentally that the airborne insertion loss and the structure-borne insertion loss are very
similar for highly damped panels. The differences are mainly limited to low frequencies. Structure-borne insertion loss is
defined here, [16], by subtracting the acoustical-mechanical conversion efficiency (AMCE)bare for a bare flat steel plate from
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Fig. 16. (a) Airborne and (b) structure-borne configurations.

Table 1
Characteristics of the fibrous material and foam.

Fibrous material Foam

Dimensions Lx� Ly�h (m) 1�1�0.03 1�1�0.03

Fluid phase density (kg m�3) 1.213 1.213

Fluid phase sound speed (m s�1) 342.2 342.2

Porosity 0.99 0.98

Flow resistivity (N s m�4) 1.8�104 2.2�104

Tortuosity 1 1.9

Viscous characteristic length (m) 6.0�10�5 8.7�10�5

Thermal characteristic length (m) 1.2�10�4 1.46�10�4

Mass density (kg m�3) 6 30

Young’s modulus (Nm�2) 0 29�104

Poisson ratio 0 0.2

Structural damping 0 0.18

Table 2
Characteristics of the MPS panel.

Layer 1 Core Layer 2

Dimensions Lx� Ly�h (m) 1�1�0.00045 1�1�10�4 1�1�0.00045

Young’s modulus (N m�2) 2.1�1011 1�106 2.1�1011

Density (kg m�3) 7800 7000 7800

Poisson ratio 0.28 0.49 0.28

Damping 0.007 0.3 0.007
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the (AMCE)treated of the same plate covered with the noise control treatment (Fig. 16 (b)). The latter is calculated from the
force and velocity at the excitation point. It is important to use the real part of the complex product which stands for the
input energy (effective power).

SBIL¼ ðAMCEÞtreated�ðAMCEÞbare (21)

where

AMCE¼ 10 log10

Pinput

Prad

� �
(22)

Here Pinput and Prad denote the input and radiated power, respectively.
In this section, these two indicators are compared for the two double-wall configurations of the previous section: panel-

foam-septum and MPS-foam-septum. In both cases, the mechanical excitation is modeled using randomly positioned point
loads (rain-on-the-roof) and the acoustic excitation by a diffuse field. As mentioned previously, among the three presented
methods, only the wave approach is able to compute the radiated power into the receiver side and thus the structure-
borne insertion loss using Eq. (19).

The results are shown in Figs. 17 and 18 for the lightly damped and highly damped structures, respectively. For the
lightly damped system (the model still accounts for the damping added by the sound package) it is observed that the two
indicators, while showing the same tendencies, are different over the whole frequency range. The difference is mainly
important near the double wall resonance of the system. The difference between the two indicators diminishes with the
damping of the main structure (Fig. 18). For the presented case, the two indicators are similar at low frequencies and close
at high frequencies. The difference at high frequencies is however somewhat surprising since one may expect the two
indicators to be close as frequency increases. The obtained results (Fig. 18) were however corroborated by the FEM
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Fig. 17. Comparison between the SBIL and ABIL for a panel–foam–septum system.
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Fig. 18. Comparison between the SBIL and ABIL for a MPS–foam–septum system.
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simulations. Note that the same comparison, not shown here, has been done between indicators for single-wall
configuration. However, this time, the two indicators are similar at high frequencies and mainly differ at low frequencies,
especially for the undamped structure. These results are in line with the experimentally observed similarity between
airborne insertion loss and structure-borne insertion loss for damped systems [7]. This also justifies somehow the current
SEA practice, which uses ABIL to correct both the resonant and non-resonant transmission paths in a panel with an
attached sound package under various excitations.

The physical interpretation of the comparison between structure-borne insertion loss and airborne insertion loss is as
follows.

In the case of acoustically excited structures the forced wave motion is dominant. Whereas, in the case of mechanically
excited structures it is the resonant wave motion that controls the response. Hence, the difference between airborne
insertion loss and structure-borne insertion loss is mainly due to these two phenomena. In the presence of the damping of
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the main structure, the maximum magnitude of the resonant waves is reduced and the forced wave motion is established.
For this reason the difference between airborne insertion loss and structure-borne insertion loss diminishes with damping.

Note that, if the system finite size was not taken into account, the two indicators will be similar (we have verified that
the two indicators are equal (e.g. see Fig. 19 for single-wall configuration)). However, as explained in the text, ignoring the
finite size effect is erroneous for the structural excitation at low frequencies. This equality of the two indicators when finite
size is ignored confirms actually the interpretation given above. Without the finite size correction, the used radiation
efficiency is based on the infinite panel expression which does not capture correctly the radiation of the system below its
critical frequency. For a diffuse acoustic field excitation, this is acceptable (for the calculation of the insertion loss) since the
transmission is governed by mass (non resonant) while for a mechanical excitation this is not the case since the response
below the critical frequency is governed by waves propagating at subsonic speeds. Actually, below the panel’s critical
frequency, the main contributor to the radiated power in the integral over wavenumber in Eq. (5) is obtained for waves
with a wavenumber greater than the acoustic wavenumber. This dominant contribution is simply ignored when finite size
effect is not accounted for since the real part of ZB,N in Eq. (4) is nil.

5. Conclusion

Three simple methods are presented and compared for the quick estimation of the structure-borne response of finite
size flat structures with added sound packages. A systematic comparison with the FEM for various single-wall and double-
wall configurations show that these methods represent an attractive alternative to finite element methods for quick
assessment of sound package performances. The three methods are shown to work correctly when used within their
assumptions. However, the wave approach (FTMM) represents the best methodology since it eliminates the assumption of
low coupling assumed in the two other methods. Moreover, it allows for an efficient computation of both the airborne
insertion loss and the structure-borne insertion loss of sound packages.
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